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INTRODUCTION

Numerical methods of analysis have contributed signifi-
cantly to our current understanding of population pharmacody-
namics and pharmacokinetics. These approaches are powerful
and are capable of extracting parameter estimates from data
(1). However, one disadvantage of using purely numerical meth-
ods is that there are relatively few intuitive analytical results
to guide reasoning about population pharmacodynamics—a
usable knowledge base can be built only after extensive exami-
nation of a large number of simulations.

In this report, a result from the theory of stochastic calculus
with potential application to population pharmacokinetics and
pharmacodynamics is highlighted. Specifically, Ito’s lemma
(2) (a lemma is mathematical terminology for a subsidiary
theorem) is used to derive an equation for the effect of popula-
tion pharmacokinetic variability in a one-compartment pharma-
cokinetic model coupled to a non-linear E., model of
pharmacodynamics.

Theoretical derivations are used to demonstrate that for a
first-order process, a log-normal distribution of concentrations
results from normally distributed elimination rate constants.
Useful formulae for calculating the drift rate and variance rate
for the effect in the non-linear E,,, model for effect are also
derived.

DERIVATIONS AND RESULTS

Ito’s Lemma

fto’s lemma is central to stochastic problems that are func-
tions of generalized Wiener processes (2). An lto process is a
stochastic process that can be expressed as:

dx = a(x, t) dt + b(x, t)dz

where a(x, t) is the drift rate or trend, b%(x, t) is the variance
rate, dt is differential time and dz is the differential of the
Wiener variable, z. For a function f(x,t), Ito’s lemma is the
stochastic calculus equivalent of the chain rule in deterministic
calculus and states that:
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Thus, the function f also follows an Ito process with a drift
rate of:
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and a variance rate of b%(df/dx)%. Also, notice that the same
stochastic variable z, contributes to both x and its function f.

First-Order Pharmacokinetics and Ito’s Lemma

In pharmacokinetics, the x of interest is the drug concentra-
tion, C. For a first-order pharmacokinetic process with efimina-
tion rate constant K:

a(x, t) = —KC

If the square root of the variance rate function, b(x,t), of the
system is characterized by a constant coefficient of variation,
o, then:

b(x, t) = ¢C

According to these assumptions, the variance of drug concentra-
tion is °C%, and the standard deviation at a given time is
proportional to concentration. This model for variance rate
accounts for the observation that the absolute variations in
concentration tend to be larger at larger concentration values
and that the variability in a given patient is also a function of
time. The term o represents the variance rate of the concentra-
tions changes when these changes are expressed as a percentage
of the absolute concentration. Alternatively, o* represents the
variance rate of the elimination rate constant. With these
assumptions, the stochastic total differential expression for drug
concentration is:

dC = —KC dt + 6C dz

The population pharmacokinetic implications of these assump-
tions for dC are now examined using the derivation in Hull

_ (3). Consider the function f = In C, using [to’s lemma.

Because (0 In CY/aC = 1/C, (3 In C)/ot = 0, and (?
In C)/aC? = —1/C?, the process followed by d(In C)is:

o?
dnC) = — (K + 7)dt + odz

Since K and o are constants, the equation shows that the change
in In C between the current time t, and any future time T, is
normally distributed with a mean drift rate of —(K + o%/2)
and a variance rate of 2. Equivalently, concentrations are log-
normally distributed in a first order process in which the square
root of the variance rate function has a constant coefficient
of variation.

Saturable E,,,, Pharmacodynamics and Ito’s Lemma

The objective of this section is to derive an analytic expres-
sion for the contribution of pharmacokinetic variability to
pharmacodynamic variability in a direct effect E,,,, pharmaco-
dynamic compartment that responds to the first-order process.
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Ito’s Lemma and Nonlinear Population Pharmacodynamics
Let the pharmacodynamic effect, E, be described by the Michae-
lis-Menten type E,,x model:

E — EmuxC
" ECso + C

Because

dE EmuxECS() _ E ECS() d In C _
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the process followed by the pharmacodynamic effect compart-
ment in the absence of intrinsic pharmacodynamic variability is:

E? ECs E’ ECs E?ECs,
E=1{- — _ g? -
d ( Kem © "B, C )" E.C¥

The variance rate of the pharmacodynamic process is thus:

o? ECx 2 E? E_ \ or equivalent} OB TECs) 2
C ) ™ \Ep) " Y\ + CEC)P

In the linear range, i.e., for values of C <<C ECsy, the pharmaco-
dynamic variance rate caused by pharmacokinetic variability is:

2
GEmaxC

Thus, it follows that in systems with linear effect, the effect

square root of variance rate function is also proportional to

concentration. At concentrations near effect compartment satu-

ration, i.e., C >> ECs,, the pharmacodynamic variance rate is
given by:

GECS()Emux :
C

Figure 1 plots the function (C/ECsp)/(1 + (C/ECsy))? against
normalized concentration C/ECsy. The variability reaches a
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Fig. 1. Figure | plots the function (C/ECso)/(1 + (C/ECs))? which
contributes to the observed variability of pharmacodynamics in the
E,..x model.
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maximum when the derivative (1/(ECsy + C)? — 2C/(ECso+
C)* = 0) or C = ECs. The maximum value of (C/ECso)/(1 +
(C/ECsp))? is 0.25; therefore the square root of the variance
rate function for the pharmacodynamics reaches a maximal
value of 0.250E,,,,.

Example: Linear Effect Kinetics in First-Order Systems
with Logarithmic Concentration-Effect Curves

It is well known that for many drugs, a linear decay with
time of pharmacodynamic effects is possible even when the
time course of drug concentration decay is exponential (4). The
occurrence of linear effect kinetics in systems with logarithmic
dose-response curves was highlighted by Levy in (5).

Now consider a drug that follows the previously used
stochastic pharmacokinetic equation:

dC = —KC dt + oC dz

Levy showed that effect followed linear time decay if the rela-
tionship between effect and concentration was described by an
equation of the form:

E=mInhC+d

In the above equation, m and d are the slope and intercept,
respectively, of the effect versus In C line. Now let us apply
Ito’s lemma to this well known effect relationship:

)
dE = —m K+?)dl+modz

This stochastic equation represents the logarithmic effects in a
system with first-order drug elimination. By putting o to zero,
it becomes evident that this equation is consistent with Levy’s
finding for deterministic systems. Thus, the Ito’s lemma
approach yields the well known linear effect kinetics result as
a special case. However, the equation also extends the Levy’s
linear effect kinetics finding to systems with stochastic pharma-
cokinetic variability because it shows that in the absence of
intrinsic pharmacodynamic variability, the effect is normally
distributed when the concentration distribution is log-normal.

DISCUSSION

In this report, | demonstrate two useful applications of Ito’s
lemma in population pharmacokinetics and pharmacodynamics
and derive mathematically rigorous analytical expressions that
can be used to obtain intuitive insights into drug development
and public policy problems. 1to’s lemma has not been previously
examined in the context of drug effects but is frequently used
in financial economics and is central to the derivation of the
famous Black-Scholes model of option pricing (6).

These: results provide additional mechanistic insight into
the origins of the log-normal distribution in pharmacokinetics.
The log-normal distribution appears frequently in population
pharmacokinetics and even the Food and Drug Administration
statistical test for bioequivalence assumes log-normal distribu-
tions. However, this prevalence of the log-normal distribution
in pharmacokinetic data is somewhat intriguing given that the
Lindeberg-Lévy Central Limit Theorem (which is central to all
parametric statistics) predicts that the distribution of sums and
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sample means from all populations approaches a normal distri-
bution in the limit of large sample size (7,8). According to the
Ito’s lemma derivation shown here, drug concentrations are
log-normally distributed in first-order processes whose square
root of variance rate function is characterized by a constant
coefficient of variation.

Levy first demonstrated that the sensitivity of E,,, pharma-
codynamic models to drug concentration variations was greatest
around the ECs, value (9). In pharmacodynamic models with
the sigmoid E,,, or Hill-type response curves, sensitivity is
also highest around the ECy, value and systems with higher
values for the Hill coefficients exhibit greater sensitivity to
variations in concentrations (9,10). Arguments based on the
slope of the response curves were used for the estimation.
Hoffman and Goldberg (11) have also examined the effect of
receptor micro-heterogeneity on the shape of Hill type response
curves. The findings in this report are qualitatively consistent
with those previously reported by these authors but clearly, the
lto’s lemma method accounts not only for the sensitivity of the
effect model but also for the variance structure of the pharmaco-
kinetic inputs. It might be argued that Ito’s femma has merely
confitmed what was already known using slope arguments:
however, it should be pointed out that ito’s lemma method
provided the tools for determining both the instantaneous slope
and the trend. Thus, the method is also very general and is
easily extended.
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